31x^4=-x^2

Simple and best practice solution for 31x^4=-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31x^4=-x^2 equation:


Simplifying
31x4 = -1x2

Solving
31x4 = -1x2

Solving for variable 'x'.

Reorder the terms:
x2 + 31x4 = -1x2 + x2

Combine like terms: -1x2 + x2 = 0
x2 + 31x4 = 0

Factor out the Greatest Common Factor (GCF), 'x2'.
x2(1 + 31x2) = 0

Subproblem 1

Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}

Subproblem 2

Set the factor '(1 + 31x2)' equal to zero and attempt to solve: Simplifying 1 + 31x2 = 0 Solving 1 + 31x2 = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + 31x2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 31x2 = 0 + -1 31x2 = 0 + -1 Combine like terms: 0 + -1 = -1 31x2 = -1 Divide each side by '31'. x2 = -0.03225806452 Simplifying x2 = -0.03225806452 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

x = {0}

See similar equations:

| 4x-3-2x=-11 | | y/9=5=0 | | N^2+6n-64=0 | | N^2+6n-74=0 | | 3x-1=-4x+7 | | -7x-3y(2x+13)=13 | | 5(2x-3)+6=2x-2(5x+3)+5 | | -7x-3y(2x+13)=3 | | Logx=log(x+7)-log*2 | | 6(x-5)=7x-13 | | -2(x+3)=(4x)-3 | | (2x+20)=(6x-10)*.5 | | X^2+y^2+18y+45=0 | | 2x+90=90 | | 5/3x3/5 | | H(X)=X^2+3X-1 | | 45=12+-3m | | f(x)=3x^2+18x-3 | | 2x=19+3 | | 7x+7=3+4x | | 7x+7+3+4x=78 | | 3a+b+5a= | | -y=-2x-8 | | 5x+20+3(4-x)=-3x-1+30 | | 3x=4+5 | | 3(x+3)=7(x-23) | | 1q-300+25q=45 | | 3.8=8.5(8n-4.6) | | -x/2-4 | | 4(x+4)-3(7x-2)=17 | | 6(10-x)-15(4+2x)=10(x-3)+30 | | (x2-7x-11)/(x-8) |

Equations solver categories